Abstract
This study presents a multi-factor rational design strategy combined with molecular dynamics simulation to improve the thermostability of Streptomyces cyaneofuscatus strain Ms1 tyrosinase. Candidate mutation sites were identified using Discovery Studio and FoldX software, and the double mutant G124W/G137W was obtained. The mutant was heterogeneously expressed in Escherichia coli strain Rosetta2 (DE3), and its thermostability was verified. Results indicate that the rational design method, combined with molecular dynamics simulation and protein energy calculation, improved the enzyme’s thermostability more accurately and effectively. The double mutant G124W/G137W had an optimum temperature of 60°C, about 5.0°C higher than that of the wild-type TYRwt, and its activity was 171.06% higher than the wild-type TYRwt. Its thermostability was enhanced, 42.78% higher than the wild-type at 50°C. These findings suggest that the rational design strategy applied in this study can facilitate the application of industrial enzymes in the pharmaceutical industry.
Funder
Science and Technology Department of Sichuan Province Project
Science and Technology Bureau, Chengdu Municipal Government Project
State Key Laboratory project of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献