Abstract
The dynamics of carbon dioxide fluxes in the high-altitude Alpine Critical Zone is only partially understood. The complex geomorphology induces significant spatial heterogeneity, and a strong interannual variability is present in the often-extreme climatic and environmental conditions of Alpine ecosystems. To explore the relative importance of the spatial and temporal variability of CO2 fluxes, we analysed a set of in-situ measurements obtained during the summers from 2018 to 2021 in four sampling plots, characterised by soils with different underlying bedrock within the same watershed in the Nivolet plain, in the Gran Paradiso National Park, western Italian Alps. Multi-regression models of CO2 emission and uptake were built using measured meteo-climatic and environmental variables considering either individual years (aggregating over plots) or individual plots (aggregating over years). We observed a significant variability of the model parameters across the different years, while such variability was much smaller across different plots. Significant changes between the different years mainly concerned the temperature dependence of respiration (CO2 emission) and the light dependence of photosynthesis (CO2 uptake). These results suggest that spatial upscaling can be obtained from site measurements, but long-term flux monitoring is required to properly capture the temporal variability at interannual scales.
Funder
Horizon 2020 - Ecopotential
INFRAIA eLTER Plus
e-shape
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献