A study of a diauxic growth experiment using an expanded dynamic flux balance framework

Author:

Karlsen EmilORCID,Gylseth Marianne,Schulz ChristianORCID,Almaas EivindORCID

Abstract

Flux balance analysis (FBA) remains one of the most used methods for modeling the entirety of cellular metabolism, and a range of applications and extensions based on the FBA framework have been generated. Dynamic flux balance analysis (dFBA), the expansion of FBA into the time domain, still has issues regarding accessibility limiting its widespread adoption and application, such as a lack of a consistently rigid formalism and tools that can be applied without expert knowledge. Recent work has combined dFBA with enzyme-constrained flux balance analysis (decFBA), which has been shown to greatly improve accuracy in the comparison of computational simulations and experimental data, but such approaches generally do not take into account the fact that altering the enzyme composition of a cell is not an instantaneous process. Here, we have developed a decFBA method that explicitly takes enzyme change constraints (ecc) into account, decFBAecc. The resulting software is a simple yet flexible framework for using genome-scale metabolic modeling for simulations in the time domain that has full interoperability with the COBRA Toolbox 3.0. To assess the quality of the computational predictions of decFBAecc, we conducted a diauxic growth fermentation experiment with Escherichia coli BW25113 in glucose minimal M9 medium. The comparison of experimental data with dFBA, decFBA and decFBAecc predictions demonstrates how systematic analyses within a fixed constraint-based framework can aid the study of model parameters. Finally, in explaining experimentally observed phenotypes, our computational analysis demonstrates the importance of non-linear dependence of exchange fluxes on medium metabolite concentrations and the non-instantaneous change in enzyme composition, effects of which have not previously been accounted for in constraint-based analysis.

Funder

Norges Forskningsråd

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3