Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf

Author:

Sinsukudomchai Pitchanun,Aht-Ong Duangdao,Honda Kohsuke,Napathorn Suchada ChanprateepORCID

Abstract

Pineapple leaf fibres are an abundant agricultural waste product that contains 26.9% cellulose. The objective of this study was to prepare fully degradable green biocomposites made of polyhydroxybutyrate (PHB) and microcrystalline cellulose from pineapple leaf fibres (PALF-MCC). To improve compatibility with PHB, the PALF-MCC was surface modified using lauroyl chloride as an esterifying agent. The influence of the esterified PALF-MCC laurate content and changes in the film surface morphology on biocomposite properties was studied. The thermal properties obtained by differential scanning calorimetry revealed a decrease in crystallinity for all biocomposites, with 100 wt% PHB displaying the highest values, whereas 100 wt% esterified PALF-MCC laurate showed no crystallinity. The addition of esterified PALF-MCC laurate increased the degradation temperature. The maximum tensile strength and elongation at break were exhibited when adding 5% of PALF-MCC. The results demonstrated that adding esterified PALF-MCC laurate as a filler in the biocomposite film could retain a pleasant value of tensile strength and elastic modulus whereas a slight increase in elongation can help to enhance flexibility. For soil burial testing, PHB/ esterified PALF-MCC laurate films with 5–20% (w/w) PALF-MCC laurate ester had higher degradation than films consisting of 100% PHB or 100% esterified PALF-MCC laurate. PHB and esterified PALF-MCC laurate derived from pineapple agricultural wastes are particularly suitable for the production of relatively low-cost biocomposite films that are 100% compostable in soil.

Funder

Chulalongkorn University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference73 articles.

1. Production, use, and fate of all plastics ever made;R Geyer;Science Advances,2017

2. The unaccountability case of plastic pellet pollution;TM Karlsson;Marine pollution bulletin,2018

3. Precautionary approach needed on biodegradable plastics, says Rethink Plastic alliance;DL Alvarès;Rethink Plastic alliance,2020

4. Biodegradable plastics: Standards, policies, and impacts;L Filiciotto;ChemSusChem,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3