Spectral-conversion film potential for greenhouses: Utility of green-to-red photons conversion and far-red filtration for plant growth

Author:

Park YujinORCID,Runkle Erik S.ORCID

Abstract

Although green (G, 500 to 600 nm) and far-red (FR, 700 to 800 nm) light play important roles in regulating plant growth and development, they are often considered less useful at stimulating photosynthesis than red (R, 600 to 700 nm) and blue (B, 400 to 500 nm) light. Based on this perception, approaches to modifying the transmission of greenhouse glazing materials include (1) conversion of G photons from sunlight into R photons and (2) exclusion of the near-infrared (>700 nm) fraction of sunlight. We evaluated these approaches using simulated scenarios with light-emitting diodes to determine how partial and complete substitution of G with R light and exclusion of FR light affected the growth of lettuce and tomato grown indoors. The substitution of G with R light had little or no effect on fresh and dry mass of tomato. However, with the presence of FR light, fresh and dry mass of lettuce increased by 22–26% as G light was increasingly substituted with R light. In tomato, excluding FR inhibited plant height, leaf area, and dry mass by 60–71%, 10–37%, and 20–44%, respectively. Similarly, in lettuce, excluding FR inhibited plant diameter, leaf length, and dry mass by 15–23%, 23–33%, or 28–48%, respectively. We conclude that the spectral conversion of G-to-R photons can promote plant growth in at least some crop species, such as lettuce, while the exclusion of FR decreases crop growth and yield.

Funder

Innovations at the Nexus of Food, Energy and Water Systems

National Institute of Food and Agriculture

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference75 articles.

1. Light quality defined;ES Runkle;Greenhouse Product News,2007

2. Performance evaluation of thin-film solar concentrators for greenhouse applications;M Hammam;Desalination,2007

3. Innovative photoselective and photoluminescent plastic films for protected cultivation;FR De Salvador;Acta Hort,2008

4. Spectrum conversion film for regulation of plant growth;K Hidaka;J. Fac. Agr,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3