Cervical cell’s nucleus segmentation through an improved UNet architecture

Author:

Rasheed AssadORCID,Shirazi Syed Hamad,Umar Arif Iqbal,Shahzad MuhammadORCID,Yousaf Waqas,Khan Zakir

Abstract

Precise segmentation of the nucleus is vital for computer-aided diagnosis (CAD) in cervical cytology. Automated delineation of the cervical nucleus has notorious challenges due to clumped cells, color variation, noise, and fuzzy boundaries. Due to its standout performance in medical image analysis, deep learning has gained attention from other techniques. We have proposed a deep learning model, namely C-UNet (Cervical-UNet), to segment cervical nuclei from overlapped, fuzzy, and blurred cervical cell smear images. Cross-scale features integration based on a bi-directional feature pyramid network (BiFPN) and wide context unit are used in the encoder of classic UNet architecture to learn spatial and local features. The decoder of the improved network has two inter-connected decoders that mutually optimize and integrate these features to produce segmentation masks. Each component of the proposed C-UNet is extensively evaluated to judge its effectiveness on a complex cervical cell dataset. Different data augmentation techniques were employed to enhance the proposed model’s training. Experimental results have shown that the proposed model outperformed extant models, i.e., CGAN (Conditional Generative Adversarial Network), DeepLabv3, Mask-RCNN (Region-Based Convolutional Neural Network), and FCN (Fully Connected Network), on the employed dataset used in this study and ISBI-2014 (International Symposium on Biomedical Imaging 2014), ISBI-2015 datasets. The C-UNet achieved an object-level accuracy of 93%, pixel-level accuracy of 92.56%, object-level recall of 95.32%, pixel-level recall of 92.27%, Dice coefficient of 93.12%, and F1-score of 94.96% on complex cervical images dataset.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference69 articles.

1. World Health Organization. "International agency for research on cancer." (2019).

2. Cervical cancer prevention—cervical screening: science in evolution;Mahboobeh Safaeian;Obstetrics and gynecology clinics of North America,2007

3. Quantitative detection of screening for cervical lesions with ThinPrep Cytology Test;Hong-xin Zhang;Clinical Oncology and Cancer Research,2010

4. Liquid-based cytology versus conventional cytology for evaluation of cervical Pap smears: experience from the first 1000 split samples;Vikrant Bhar Singh;Indian Journal of Pathology and Microbiology,2015

5. A review of automated techniques for cervical cell image analysis and classification;Marina E. Plissiti;Biomedical imaging and computational modeling in biomechanics,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3