A computational offloading optimization scheme based on deep reinforcement learning in perceptual network

Author:

Xing Yongli,Ye Tao,Ullah Sami,Waqas MuhammadORCID,Alasmary Hisham,Liu Zihui

Abstract

Currently, the deep integration of the Internet of Things (IoT) and edge computing has improved the computing capability of the IoT perception layer. Existing offloading techniques for edge computing suffer from the single problem of solidifying offloading policies. Based on this, combined with the characteristics of deep reinforcement learning, this paper investigates a computation offloading optimization scheme for the perception layer. The algorithm can adaptively adjust the computational task offloading policy of IoT terminals according to the network changes in the perception layer. Experiments show that the algorithm effectively improves the operational efficiency of the IoT perceptual layer and reduces the average task delay compared with other offloading algorithms.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. Ad hoc vehicular fog enabling cooperative low-latency intrusion detection;A Mourad;IEEE Internet of Things Journal,2020

2. Zeng M, Li Y, Zhang K, Waqas M, Jin D. Incentive Mechanism Design for Computation Offloading in Heterogeneous Fog Computing: A Contract-Based Approach. In:; 2018: 1–6.

3. Internet of things offloading: Ongoing issues, opportunities, and future challenges;A Heidari;International Journal of Communication Systems,2021

4. Intelligent task prediction and computation offloading based on mobile-edge cloud computing;Y Miao;Future Generation Computer Systems,2020

5. Multi-user multi-task computation offloading in green mobile edge cloud computing;W Chen;IEEE Transactions on Services Computing,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3