A phenotype driven integrative framework uncovers molecular mechanisms of a rare hereditary thrombophilia

Author:

Malod-Dognin NoëlORCID,Ceddia GaiaORCID,Gvozdenov Maja,Tomić Branko,Dunjić Manevski Sofija,Djordjević Valentina,Pržulj Nataša

Abstract

Antithrombin resistance is a rare subtype of hereditary thrombophilia caused by prothrombin gene variants, leading to thrombotic disorders. Recently, the Prothrombin Belgrade variant has been reported as a specific variant that leads to antithrombin resistance in two Serbian families with thrombosis. However, due to clinical data scarcity and the inapplicability of traditional genome-wide association studies (GWAS), a broader perspective on molecular and phenotypic mechanisms associated with the Prothrombin Belgrade variant is yet to be uncovered. Here, we propose an integrative framework to address the lack of genomic samples and support the genomic signal from the full genome sequences of five heterozygous subjects by integrating it with subjects’ phenotypes and the genes’ molecular interactions. Our goal is to identify candidate thrombophilia-related genes for which our subjects possess germline variants by focusing on the resulting gene clusters of our integrative framework. We applied a Non-negative Matrix Tri-Factorization-based method to simultaneously integrate different data sources, taking into account the observed phenotypes. In other words, our data-integration framework reveals gene clusters involved with this rare disease by fusing different datasets. Our results are in concordance with the current literature about antithrombin resistance. We also found candidate disease-related genes that need to be further investigated. CD320, RTEL1, UCP2, APOA5 and PROZ participate in healthy-specific or disease-specific subnetworks involving thrombophilia-annotated genes and are related to general thrombophilia mechanisms according to the literature. Moreover, the ADRA2A and TBXA2R subnetworks analysis suggested that their variants may have a protective effect due to their connection with decreased platelet activation. The results show that our method can give insights into antithrombin resistance even if a small amount of genetic data is available. Our framework is also customizable, meaning that it applies to any other rare disease.

Funder

European Research Council

Agencia Estatal de Investigación

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference57 articles.

1. Venous thrombosis: the role of genes, environment, and behavior;FR Rosendaal;ASH Education Program Book,2005

2. Genetic risk factors of venous thrombosis;RF Franco;Human Genetics,2001

3. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study;JC Souto;The American Journal of Human Genetics,2000

4. Thrombosis: a major contributor to global disease burden;GE Raskob;Arteriosclerosis, Thrombosis, and Vascular Biology,2014

5. Thrombosis from a prothrombin mutation conveying antithrombin resistance;Y Miyawaki;New England Journal of Medicine,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current and future directions in network biology;Bioinformatics Advances;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3