Molecular evidence of parallel evolution in a cyanophage

Author:

Tjendra JesslynORCID,Storesund Julia E.,Dahle Håkon,Sandaa Ruth-AnneORCID,Våge SelinaORCID

Abstract

Antagonistic interactions between bacteriophage (phage) and its bacterial host drives the continual selection for resistance and counter-defence. To date, much remains unknown about the genomic evolution that occurs as part of the underlying mechanisms. Such is the case for the marine cyanobacteria Synechococcus and viruses (cyanophages) that infect them. Here, we monitored host and phage abundances, alongside genomic changes to the phage populations, in a 500-day (~55 bacterial generations) infection experiment between Synechococcus sp. WH7803 and the T4-type cyanophage S-PM2d, run parallel in three replicate chemostats (plus one control chemostat). Flow cytometric count of total abundances revealed relatively similar host-phage population dynamics across the chemostats, starting with a cycle of host population collapse and recovery that led to phases of host-phage coexistence. Whole-genome analysis of the S-PM2d populations detected an assemblage of strongly selected and repeatable genomic changes, and therefore parallel evolution in the phage populations, early in the experiment (sampled on day 39). These consisted mostly of non-synonymous single-nucleotide-polymorphisms and a few instances of indel, altogether affecting 18 open-reading-frames, the majority of which were predicted to encode virion structures including those involved in phage adsorption onto host (i.e., baseplate wedge, short tail fibre, adhesin component). Mutations that emerged later (sampled on day 500), on the other hand, were found at a larger range of frequencies, with many lacking repeatability across the chemostats. This is indicative of some degree of between-population divergence in the phage evolutionary trajectory over time. A few of the early and late mutations were detected within putative auxiliary metabolic genes, but these generally occurred in only one or two of the chemostats. Less repeatable mutations may have higher fitness costs, thus drawing our attention onto the role of trade-offs in modulating the trajectory of a host-phage coevolution.

Funder

European Research Council

Norges Forskningsråd

Trond Mohn stiftelse

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Antagonistic coevolution between a bacterium and a bacteriophage;A Buckling;Proc R Soc B Biol Sci,2002

2. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities;B Koskella;FEMS Microbiol Rev,2014

3. Molecular evolution as predicted by natural selection;L. Van Valen;J Mol Evol,1974

4. Gene-for-gene coevolution between plants and parasites;JN Thompson;Nature. Nature Publishing Group,1992

5. Antagonistic coevolution accelerates molecular evolution;S Paterson;Nature,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3