Estimation of population parameters using sample extremes from nonconstant sample sizes

Author:

Kolba Tiffany N.ORCID,Bruno Alexander

Abstract

We examine the accuracy and precision of parameter estimates for both the exponential and normal distributions when using only a collection of sample extremes. That is, we consider a collection of random variables, where each of the random variables is either the minimum or maximum of a sample of nj independent, identically distributed random variables drawn from a normal or exponential distribution with unknown parameters. Previous work derived estimators for the population parameters assuming the nj sample sizes are constant. Since sample sizes are often not constant in applications, we derive new unbiased estimators that take into account the varying sample sizes. We also perform simulations to assess how the previously derived estimators perform when the constant sample size is simply replaced with the average sample size. We explore how varying the mean, standard deviation, and probability distribution of the sample sizes affects the estimation error. Overall, our results demonstrate that using the average sample size in place of the constant sample size still results in reliable estimates for the population parameters, especially when the average sample size is large. Our estimation framework is applied to a biological example involving plant pollination.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3