Robust small area estimation for unit level model with density power divergence

Author:

Niu XijuanORCID,Pang Zhiqiang,Wang Zhaoxu

Abstract

Unit level model is one of the classical models in small area estimation, which plays an important role with unit information data. Empirical Bayesian(EB) estimation, as the optimal estimation under normal assumption, is the most commonly used parameter estimation method in unit level model. However, this kind of method is sensitive to outliers, and EB estimation will lead to considerable inflation of the mean square error(MSE) when there are outliers in the responses yij. In this study, we propose a robust estimation method for the unit-level model with outliers based on the minimum density power divergence. Firstly, by introducing the minimum density power divergence function, we give the estimation equation of the parameters of the unit level model, and obtain the asymptotic distribution of the robust parameters. Considering the existence of tuning parameters in the robust estimator, an optimal parameter selection algorithm is proposed. Secondly, empirical Bayesian predictors of unit and area mean in finite populations are given, and the MSE of the proposed robust estimators of small area means is given by bootstrap method. Finally, we verify the superior performance of our proposed method through simulation data and real data. Through comparison, our proposed method can can solve the outlier situation better.

Funder

Gansu Province Outstanding Graduate Innovation Star Project

Qinghai Normal University Natural Science Young and Middle-aged Fund Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference35 articles.

1. Mapping disease and mortality rates using empirical Bayes estimators;RJ Marshall;Journal of the Royal Statistical Society: Series C (Applied Statistics),1991

2. Empirical Bayes estimates of age-standardized relative risks for use in disease mapping;D Clayton;Biometrics,1987

3. Modeling random effects using global–local shrinkage priors in small area estimation;X Tang;Journal of the American Statistical Association,2018

4. Robust and efficient estimation by minimising a density power divergence;A Basu;Biometrika,1998

5. An error-components model for prediction of county crop areas using survey and satellite data;GE Battese;Journal of the American Statistical Association,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3