Mixture prior for sparse signals with dependent covariance structure

Author:

Wang LingORCID,Liao Zongqiang

Abstract

In this study, we propose an estimation method for normal mean problem that can have unknown sparsity as well as correlations in the signals. Our proposed method first decomposes arbitrary dependent covariance matrix of the observed signals into two parts: common dependence and weakly dependent error terms. By subtracting common dependence, the correlations among the signals are significantly weakened. It is practical for doing this because of the existence of sparsity. Then the sparsity is estimated using an empirical Bayesian method based on the likelihood of the signals with the common dependence removed. Using simulated examples that have moderate to high degrees of sparsity and different dependent structures in the signals, we demonstrate that the performance of our proposed algorithm is favorable compared to the existing method which assumes the signals are independent identically distributed. Furthermore, our approach is applied on the widely used “Hapmap” gene expressions data, and our results are consistent with the findings in other studies.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. Calibration and empirical Bayes variable selection;E. George;Biometrika,2000

2. Diagnosis of multiple cancer types by shrunken centroids of gene expression;R. Tibshirani;Proceedings Of The National Academy Of Sciences,2002

3. An introduction to variable and feature selection;I. Guyon;Journal Of Machine Learning Research,2003

4. Raykar, V. & Zhao, L. Nonparametric prior for adaptive sparsity. Proceedings Of The Thirteenth International Conference On Artificial Intelligence And Statistics. pp. 629–636 (2010)

5. Adapting to unknown sparsity by controlling the false discovery rate;F. Abramovich;The Annals Of Statistics,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3