Prediction of stock price movement using an improved NSGA-II-RF algorithm with a three-stage feature engineering process

Author:

Zeng XiaohuaORCID,Cai Jieping,Liang Changzhou,Yuan Chiping

Abstract

Prediction of stock price has been a hot topic in artificial intelligence field. Computational intelligent methods such as machine learning or deep learning are explored in the prediction system in recent years. However, making accurate predictions of stock price direction is still a big challenge because stock prices are affected by nonlinear, nonstationary, and high dimensional features. In previous works, feature engineering was overlooked. How to select the optimal feature sets that affect stock price is a prominent solution. Hence, our motivation for this article is to propose an improved many-objective optimization algorithm integrating random forest (I-NSGA-II-RF) algorithm with a three-stage feature engineering process in order to decrease the computational complexity and improve the accuracy of prediction system. Maximizing accuracy and minimizing the optimal solution set are the optimization directions of the model in this study. The integrated information initialization population of two filtered feature selection methods is used to optimize the I-NSGA-II algorithm, using multiple chromosome hybrid coding to synchronously select features and optimize model parameters. Finally, the selected feature subset and parameters are input to the RF for training, prediction, and iterative optimization. Experimental results show that the I-NSGA-II-RF algorithm has the highest average accuracy, the smallest optimal solution set, and the shortest running time compared to the unmodified multi-objective feature selection algorithm and the single target feature selection algorithm. Compared to the deep learning model, this model has interpretability, higher accuracy, and less running time.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3