Abstract
Human cytomegalovirus causes severe diseases in children (by congenital infection) and immunocompromised patients. Treatment with antiviral agents, such as ganciclovir, is limited by their toxicity. In this study, we investigated the effectiveness of a fully human neutralizing monoclonal antibody to inhibit human cytomegalovirus infection and viral cell-to-cell spread. We isolated a potent neutralizing antibody, EV2038 (IgG1 lambda), targeting human cytomegalovirus glycoprotein B using Epstein-Barr virus transformation. This antibody inhibited human cytomegalovirus infection by all four laboratory strains and 42 Japanese clinical isolates, including ganciclovir-resistant isolates, with a 50% inhibitory concentration (IC50) ranging from 0.013 to 0.105 μg/mL, and 90% inhibitory concentration (IC90) ranging from 0.208 to 1.026 μg/mL, in both human embryonic lung fibroblasts (MRC-5) and human retinal pigment epithelial (ARPE-19) cells. Additionally, EV2038 prevented cell-to-cell spread of eight clinical viral isolates, with IC50values ranging from 1.0 to 3.1 μg/mL, and IC90values ranging from 13 to 19 μg/mL, in ARPE-19 cells. EV2038 recognized three discontinuous sequences on antigenic domain 1 of glycoprotein B (amino acids 549–560, 569–576, and 625–632), which were highly conserved among 71 clinical isolates from Japan and the United States. Pharmacokinetics study in cynomolgus monkeys suggested the potential efficacy of EV2038in vivo, the concentration of which in serum remained higher than the IC90values of cell-to-cell spread until 28 days after intravenous injection of 10 mg/kg EV2038. Our data strongly support EV2038 as a promising candidate and novel alternative for the treatment of human cytomegalovirus infection.
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献