A hybrid machine learning feature selection model—HMLFSM to enhance gene classification applied to multiple colon cancers dataset

Author:

Al-Rajab MuradORCID,Lu Joan,Xu Qiang,Kentour Mohamed,Sawsa Ahlam,Shuweikeh Emad,Joy Mike,Arasaradnam Ramesh

Abstract

Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM–Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance.

Funder

Abu Dhabi University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3