Fast electro-plasmonic detection of heart signal in Balb/C cells onto one-dimensional plasmonic grating

Author:

Akbari S.,Hamidi S. M.ORCID,Eftekhari H.,Heirani-Tabasi A.

Abstract

The heart is a vital and complex organ in the human body that forms with most organs between the second week of pregnancy, and fetal heart rate is an important indicator or biological index to know the condition of fetal well-being. In general, long-term measurement of fetal heart rate is the most widely used method of providing information about fetal health. In addition to fetal life, growth, and maturity, information such as congenital heart disease, often due to structural or functional defects in heart structure that often occur during the first trimester of pregnancy during fetal development, can be detected by continuous monitoring of fetal heart rate. The gold standard for monitoring the fetus’s health is the use of non-invasive methods and portable devices so that while maintaining the health of the mother and fetus, it provides the possibility of continuous monitoring, especially for mothers who have a high-risk pregnancy. Therefore, the present study aimed to propose a low-cost, compact, and portable device for recording the heart rate of 18-day-old fetal mouse heart cells. Introduced device allows non-invasive heart rate monitoring instantly and without side effects for mouse fetal heart cells. One-dimensional gold-plated plasmonic specimens as a physiological signal recorder are mainly chips with nanoarray of resonant nanowire patterns perform in an integrated platform. Here the surface plasmon waves generated in a one-dimensional plasmonic sample are paired with an electrical wave from the heart pulse, and this two-wave pairing is used to record and detect the heart rate of fetal heart cells with high accuracy and good sensitivity. This measurement was performed in normal mode and two different stimulation modes. Stimulation of cells was performed once using adrenaline and again with electrical stimulation. Our results show that our sensor is sensitive enough to detect heart rate in both standard and excitatory states and is also well able to detect and distinguish between changes in heart rate caused by different excitatory conditions.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference25 articles.

1. A Review of Fetal ECG Signal Processing; Issues and Promising Directions;R. Sameni;The open pacing, electrophysiology & therapy journal,2010

2. Review Article: Non-Invasive Fetal Heart Rate Monitoring Techniques;E. W. Abdulhay;Biomedical Science and Engineering,2014

3. Fetal heart rate monitoring;M. P. Nageotte;Seminars in Fetal and Neonatal Medicine,2015

4. Development of a low cost fetal heart sound monitoring system for home care application;A.K. Mittra;Journal of Biomedical Science and Engineering,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3