Automated 3-dimensional MRI segmentation for the posterosuperior rotator cuff tear lesion using deep learning algorithm

Author:

Lee Su Hyun,Lee JiHwanORCID,Oh Kyung-Soo,Yoon Jong Pil,Seo Anna,Jeong YoungJin,Chung Seok WonORCID

Abstract

IntroductionRotator cuff tear (RCT) is a challenging and common musculoskeletal disease. Magnetic resonance imaging (MRI) is a commonly used diagnostic modality for RCT, but the interpretation of the results is tedious and has some reliability issues. In this study, we aimed to evaluate the accuracy and efficacy of the 3-dimensional (3D) MRI segmentation for RCT using a deep learning algorithm.MethodsA 3D U-Net convolutional neural network (CNN) was developed to detect, segment, and visualize RCT lesions in 3D, using MRI data from 303 patients with RCTs. The RCT lesions were labeled by two shoulder specialists in the entire MR image using in-house developed software. The MRI-based 3D U-Net CNN was trained after the augmentation of a training dataset and tested using randomly selected test data (training: validation: test data ratio was 6:2:2). The segmented RCT lesion was visualized in a three-dimensional reconstructed image, and the performance of the 3D U-Net CNN was evaluated using the Dice coefficient, sensitivity, specificity, precision, F1-score, and Youden index.ResultsA deep learning algorithm using a 3D U-Net CNN successfully detected, segmented, and visualized the area of RCT in 3D. The model’s performance reached a 94.3% of Dice coefficient score, 97.1% of sensitivity, 95.0% of specificity, 84.9% of precision, 90.5% of F1-score, and Youden index of 91.8%.ConclusionThe proposed model for 3D segmentation of RCT lesions using MRI data showed overall high accuracy and successful 3D visualization. Further studies are necessary to determine the feasibility of its clinical application and whether its use could improve care and outcomes.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3