Color restoration based on digital pathology image

Author:

Sun GuoxinORCID,Yan Xiong,Wang Huizhe,Li Fei,Yang Rui,Xu Jing,Liu Xin,Li Xiaomao,Zou Xiao

Abstract

Objective Protective color restoration of faded digital pathology images based on color transfer algorithm. Methods Twenty fresh tissue samples of invasive breast cancer from the pathology department of Qingdao Central Hospital in 2021 were screened. After HE staining, HE stained sections were irradiated with sunlight to simulate natural fading, and every 7 days was a fading cycle, and a total of 8 cycles were experienced. At the end of each cycle, the sections were digitally scanned to retain clear images, and the color changes of the sections during the fading process were recorded. The color transfer algorithm was applied to restore the color of the faded images; Adobe Lightroom Classic software presented the histogram of the image color distribution; UNet++ cell recognition segmentation model was used to identify the color restored images; Natural Image Quality Evaluator (NIQE), Information Entropy (Entropy), and Average Gradient (AG) were applied to evaluate the quality of the restored images. Results The restored image color met the diagnostic needs of pathologists. Compared with the faded images, the NIQE value decreased (P<0.05), Entropy value increased (P<0.01), and AG value increased (P<0.01). The cell recognition rate of the restored image was significantly improved. Conclusion The color transfer algorithm can effectively repair faded pathology images, restore the color contrast between nucleus and cytoplasm, improve the image quality, meet the diagnostic needs and improve the cell recognition rate of the deep learning model.

Funder

Chinese Society of Clinical Oncology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3