Graph-based machine learning improves just-in-time defect prediction

Author:

Bryan Jonathan,Moriano PabloORCID

Abstract

The increasing complexity of today’s software requires the contribution of thousands of developers. This complex collaboration structure makes developers more likely to introduce defect-prone changes that lead to software faults. Determining when these defect-prone changes are introduced has proven challenging, and using traditional machine learning (ML) methods to make these determinations seems to have reached a plateau. In this work, we build contribution graphs consisting of developers and source files to capture the nuanced complexity of changes required to build software. By leveraging these contribution graphs, our research shows the potential of using graph-based ML to improve Just-In-Time (JIT) defect prediction. We hypothesize that features extracted from the contribution graphs may be better predictors of defect-prone changes than intrinsic features derived from software characteristics. We corroborate our hypothesis using graph-based ML for classifying edges that represent defect-prone changes. This new framing of the JIT defect prediction problem leads to remarkably better results. We test our approach on 14 open-source projects and show that our best model can predict whether or not a code change will lead to a defect with an F1 score as high as 77.55% and a Matthews correlation coefficient (MCC) as high as 53.16%. This represents a 152% higher F1 score and a 3% higher MCC over the state-of-the-art JIT defect prediction. We describe limitations, open challenges, and how this method can be used for operational JIT defect prediction.

Funder

UT-Battelle, LLC

Oak Ridge National Laboratory’s (ORNL’s) Laboratory Directed Research and Development

DOE, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Scientific Undergraduate Laboratory Internship (SULI) program

ORNL’s Artificial Intelligence initiative

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3