Shaping of topography by topographically-controlled vegetation in tropical montane rainforest

Author:

Brocard GillesORCID,Willebring Jane K.ORCID,Scatena Fred N.

Abstract

Topography is commonly viewed as a passive backdrop on which vegetation grows. Yet, in certain circumstances, a bidirectional feedback may develop between the control of topography and the spatial distribution of vegetation and landform development, because vegetation modulates the erosion of the land surface. Therefore, if reinforcing feedbacks are established between erosion and land cover distribution over timescales relevant to landform development, then the interactions between vegetation and topography may create distinctive landforms, shaped by vegetation. We expose here a strong correlation between the spatial distribution of vegetation, erosion rates, and topography at a characteristic length scale of 102-103m (mesoscale topography) in the Luquillo Experimental forest (LEF) of Puerto Rico. We use high-resolution LiDAR topography to characterize landforms, satellite images to classify the vegetation into forest types, and in-situ produced cosmogenic 10Be in the quartz extracted from soils and stream sediments to document spatial variations in soil erosion. The data document a strong correlation between forest type and topographic position (hilltop vs. valleys), and a correlation between topographic position and 10Be-derived erosion rates over 103−104 years. Erosion is faster in valleys, which are mostly covered by monocot Palm Forest, and slower on surrounding hills mostly covered by the dicot Palo Colorado Forest. Transition from one forest type to the next occurs across a break-in-slope that separates shallowly convex hilltops from deeply concave valleys (coves). The break-in-slope is the consequence of a longer-lasting erosional imbalance whereby coves erode faster than hills over landscape-shaping timescales. Such a deepening of the coves is usually spurred by external drivers, but such drivers are here absent. This implies that cove erosion is driven by a process originating within the coves themselves. We propose that vegetation is the primary driver of this imbalance, soil erosion being faster under Palm forest than under Palo Colorado forest. Concentration of the Palm forest in the deepening coves is reinforced by the better adaptation of Palm trees to the erosive processes that take place in the coves, once these develop steep slopes. At the current rate of landscape development, we find that the imbalance started within the past 0.1–1.5 My. The initiation of the process could correspond to time of settlement of these mountain slopes by the Palm and Palo Colorado forests.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition;P. Grubb;Annual Review of Ecology and Systematics,1977

2. Tropical soil nutrient distributions determined by biotic and hillslope processes;KD Chadwick;Biogeochemistry,2016

3. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient;FA Werner;Functional Ecology,2015

4. Modeling the effects of vegetation-erosion coupling on landscape evolution;DBG Collins;Journal of Geophysical Research,2004

5. Modelling the links between vegetation and landforms;M. Kirkby;Geomorphology,1995

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3