Fine-scale vertical relationships between environmental conditions and sound scattering layers in the Southwestern Tropical Atlantic

Author:

Assunção RamillaORCID,Lebourges-Dhaussy Anne,da Silva Alex C.ORCID,Roudaut Gildas,Ariza Alejandro,Eduardo Leandro N.ORCID,Queiroz SyumaraORCID,Bertrand Arnaud

Abstract

Ocean dynamics initiate the structure of nutrient income driving primary producers, and these, in turn, shape the distribution of subsequent trophic levels until the whole pelagic community reflects the physicochemical structure of the ocean. Despite the importance of bottom-up structuring in pelagic ecosystems, fine-scale studies of biophysical interactions along depth are scarce and challenging. To improve our understanding of such relationships, we analyzed the vertical structure of key oceanographic variables along with the distribution of acoustic biomass from multi-frequency acoustic data (38, 70, and 120 kHz) as a reference for pelagic fauna. In addition, we took advantage of species distribution databases collected at the same time to provide further interpretation. The study was performed in the Southwestern Tropical Atlantic of northeast Brazil in spring 2015 and autumn 2017, periods representative of canonical spring and autumn conditions in terms of thermohaline structure and current dynamics. We show that chlorophyll-a, oxygen, current, and stratification are important drivers for the distribution of sound scattering biota but that their relative importance depends on the area, the depth range, and the diel cycle. Prominent sound scattering layers (SSLs) in the epipelagic layer were associated with strong stratification and subsurface chlorophyll-a maximum. In areas where chlorophyll-a maxima were deeper than the peak of stratifications, SSLs were more correlated with stratification than subsurface chlorophyll maxima. Dissolved oxygen seems to be a driver in locations where lower oxygen concentration occurs in the subsurface. Finally, our results suggest that organisms seem to avoid strong currents core. However, future works are needed to better understand the role of currents on the vertical distribution of organisms.

Funder

H2020 European Research Council

CAPES/COFECUB

Conselho Nacional de Desenvolvimento Científico e Tecnológico

EU H2020 TRIATLAS project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3