Detection of microplastics in human saphenous vein tissue using μFTIR: A pilot study

Author:

Rotchell Jeanette M.,Jenner Lauren C.,Chapman Emma,Bennett Robert T.,Bolanle Israel OlapejuORCID,Loubani MahmoudORCID,Sadofsky Laura,Palmer Timothy M.

Abstract

Microplastics (MPs) are ubiquitous in the environment, in the human food chain, and have been recently detected in blood and lung tissues. To undertake a pilot analysis of MP contamination in human vein tissue samples with respect to their presence (if any), levels, and characteristics of any particles identified. This study analysed digested human saphenous vein tissue samples (n = 5) using μFTIR spectroscopy (size limitation of 5 μm) to detect and characterise any MPs present. In total, 20 MP particles consisting of five MP polymer types were identified within 4 of the 5 vein tissue samples with an unadjusted average of 29.28 ± 34.88 MP/g of tissue (expressed as 14.99 ± 17.18 MP/g after background subtraction adjustments). Of the MPs detected in vein samples, five polymer types were identified, of irregular shape (90%), with alkyd resin (45%), poly (vinyl propionate/acetate, PVAc (20%) and nylon-ethylene-vinyl acetate, nylon-EVA, tie layer (20%) the most abundant. While the MP levels within tissue samples were not significantly different than those identified within procedural blanks (which represent airborne contamination at time of sampling), they were comprised of different plastic polymer types. The blanks comprised n = 13 MP particles of four MP polymer types with the most abundant being polytetrafluoroethylene (PTFE), then polypropylene (PP), polyethylene terephthalate (PET) and polyfumaronitrile:styrene (FNS), with a mean ± SD of 10.4 ± 9.21, p = 0.293. This study reports the highest level of contamination control and reports unadjusted values alongside different contamination adjustment techniques. This is the first evidence of MP contamination of human vascular tissues. These results support the phenomenon of transport of MPs within human tissues, specifically blood vessels, and this characterisation of types and levels can now inform realistic conditions for laboratory exposure experiments, with the aim of determining vascular health impacts.

Funder

University of Hull

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3