Many-objective African vulture optimization algorithm: A novel approach for many-objective problems

Author:

Askr Heba,Farag M. A.ORCID,Hassanien Aboul EllaORCID,Snášel VáclavORCID,Farrag Tamer Ahmed

Abstract

Several optimization problems can be abstracted into many-objective optimization problems (MaOPs). The key to solving MaOPs is designing an effective algorithm to balance the exploration and exploitation issues. This paper proposes a novel many-objective African vulture optimization algorithm (MaAVOA) that simulating the African vultures’ foraging and navigation behaviours to solve the MaOPs. MaAVOA is an updated version of the African Vulture Optimization Algorithm (AVOA), which was recently proposed to solve the MaOPs. A new social leader vulture for the selection process is introduced and integrated into the proposed model. In addition, an environmental selection mechanism based on the alternative pool is adapted to improve the selection process to maintain diversity for approximating different parts of the whole Pareto Front (PF). The best-nondominated solutions are saved in an external Archive based on the Fitness Assignment Method (FAM) during the population evolution. FAM is based on a convergence measure that promotes convergence and a density measure that promotes variety. Also, a Reproduction of Archive Solutions (RAS) procedure is developed to improve the quality of archiving solutions. RAS has been designed to help reach out to the missing areas of the PF that the vultures easily miss. Two experiments are conducted to verify and validate the suggested MaAVOA’s performance efficacy. First, MaAVOA was applied to the DTLZ functions, and its performance was compared to that of several popular many-objective algorithms and according to the results, MaAVOA outperforms the competitor algorithms in terms of inverted generational distance and hypervolume performance measures and has a beneficial adaptation ability in terms of both convergence and diversity performance measures. Also, statistical tests are implemented to demonstrate the suggested algorithm’s statistical relevance. Second, MaAVOA has been applied to solve two real-life constrained engineering MaOPs applications, namely, the series-parallel system and overspeed protection for gas turbine problems. The experiments show that the suggested algorithm can tackle many-objective real-world applications and provide promising choices for decision-makers.

Funder

Ministry of Education, Youth and Sports of the Czech Republic in the project Metaheuristics Framework for Multi-Objective Combinatorial Optimization Problems

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. A many-objective optimization algorithm based on weight vector adjustment;Y. Wang;Comput. Intell. Neurosci.,2018

2. Many-objective optimization: Problems and evolutionary algorithms–a short review;S. Mane;Int. J. Appl. Eng. Res.,2017

3. Load balancing and service discovery using Docker Swarm for microservice-based big data applications;N. Singh;Journal of Cloud Computing,2023

4. Levelized Multiple Workflow Allocation Strategy under Precedence Constraints with Task Merging in IaaS Cloud Environment;F. Ahmad;IEEE Access,2022

5. An integration of autonomic computing with multicore systems for performance optimization in Industrial Internet of Things;Surendra Kumar Shukla;IET Communications,2022

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3