Detecting CTP truncation artifacts in acute stroke imaging from the arterial input and the vascular output functions

Author:

de la Rosa EzequielORCID,Sima Diana M.,Kirschke Jan S.ORCID,Menze Bjoern,Robben DavidORCID

Abstract

Background Current guidelines for CT perfusion (CTP) in acute stroke suggest acquiring scans with a minimal duration of 60-70 s. But even then, CTP analysis can be affected by truncation artifacts. Conversely, shorter acquisitions are still widely used in clinical practice and may, sometimes, be sufficient to reliably estimate lesion volumes. We aim to devise an automatic method that detects scans affected by truncation artifacts. Methods Shorter scan durations are simulated from the ISLES’18 dataset by consecutively removing the last CTP time-point until reaching a 10 s duration. For each truncated series, perfusion lesion volumes are quantified and used to label the series as unreliable if the lesion volumes considerably deviate from the original untruncated ones. Afterwards, nine features from the arterial input function (AIF) and the vascular output function (VOF) are derived and used to fit machine-learning models with the goal of detecting unreliably truncated scans. Methods are compared against a baseline classifier solely based on the scan duration, which is the current clinical standard. The ROC-AUC, precision-recall AUC and the F1-score are measured in a 5-fold cross-validation setting. Results The best performing classifier obtained an ROC-AUC of 0.982, precision-recall AUC of 0.985 and F1-score of 0.938. The most important feature was the AIFcoverage, measured as the time difference between the scan duration and the AIF peak. When using the AIFcoverage to build a single feature classifier, an ROC-AUC of 0.981, precision-recall AUC of 0.984 and F1-score of 0.932 were obtained. In comparison, the baseline classifier obtained an ROC-AUC of 0.954, precision-recall AUC of 0.958 and F1-Score of 0.875. Conclusions Machine learning models fed with AIF and VOF features accurately detected unreliable stroke lesion measurements due to insufficient acquisition duration. The AIFcoverage was the most predictive feature of truncation and identified unreliable short scans almost as good as machine learning. We conclude that AIF/VOF based classifiers are more accurate than the scans’ duration for detecting truncation. These methods could be transferred to perfusion analysis software in order to increase the interpretability of CTP outputs.

Funder

Horizon 2020

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference35 articles.

1. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis;A Konstas;American Journal of Neuroradiology,2009

2. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME;GW Albers;Annals of neurology,2016

3. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies;M Smith;Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine,2004

4. Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging;O Wu;Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine,2003

5. CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition;HJ Wittsack;Computerized Medical Imaging and Graphics,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3