Development of a neural network model to predict the presence of fentanyl in community drug samples

Author:

Ti LianpingORCID,Grant Cameron J.ORCID,Tobias SamuelORCID,Hore Dennis K.,Laing Richard,Marshall Brandon D. L.ORCID

Abstract

Introduction Increasingly, Fourier-transform infrared (FTIR) spectroscopy is being used as a harm reduction tool to provide people who use drugs real-time information about the contents of their substances. However, FTIR spectroscopy has been shown to have a high detection limit for fentanyl and interpretation of results by a technician can be subjective. This poses concern, given that some synthetic opioids can produce serious toxicity at sub-detectable levels. The objective of this study was to develop a neural network model to identify fentanyl and related analogues more accurately in drug samples compared to traditional analysis by technicians. Methods Data were drawn from samples analyzed point-of-care using combination FTIR spectroscopy and fentanyl immunoassay strips in British Columbia between August 2018 and January 2021. We developed neural network models to predict the presence of fentanyl based on FTIR data. The final model was validated against the results from immunoassay strips. Prediction performance was assessed using F1 score, accuracy, and area under the receiver-operating characteristic curve (AUROC), and was compared to results obtained from analysis by technicians. Results A total of 12,684 samples were included. The neural network model outperformed results from those analyzed by technicians, with an F1 score of 96.4% and an accuracy of 96.4%, compared to 78.4% and 82.4% with a technician, respectively. The AUROC of the model was 99.0%. Fentanyl positive samples correctly detected by the model but not by the technician were typically those with low fentanyl concentrations (median: 2.3% quantity by weight; quartile 1–3: 0.0%-4.6%). Discussion Neural network models can accurately predict the presence of fentanyl and related analogues using FTIR data, including samples with low fentanyl concentrations. Integrating this tool within drug checking services utilizing FTIR spectroscopy has the potential to improve decision making to reduce the risk of overdose and other negative health outcomes.

Funder

Health Canada

National Institute on Drug Abuse

Vancouver Foundation

Michael Smith Health Research BC

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3