Collaborative optimization for train stop planning and train timetabling on high-speed railways based on passenger demand

Author:

Li YaweiORCID,Han BaomingORCID,Zhao PengORCID,Yang RuixiaORCID

Abstract

In recent years, with increasing passenger travel demand, high-speed railways have developed rapidly. The stop planning and timetabling problems are the core contents of high-speed railway transport planning and have important practical significance for improving efficiency of passenger travel and railway operation Dong et al. (2020). This study proposes a collaborative optimization approach that can be divided into two phases. In the first phase, a mixed-integer nonlinear programming model is constructed to obtain a stop plan by minimizing the total passenger travel time. The constraints of passenger origin-destination (OD) demand, train capacity, and stop frequency are considered in the first phase. In the second phase, the train timetable is optimized after the stop plan is obtained. A multiobjective mixed-integer linear optimization model is formulated by minimizing the total train travel time and the deviation between the expected and actual departure times from the origin station for all trains. Multiple types of trains and more refined headways are considered in the timetabling model. Finally, the approach is applied to China’s high-speed railway, and the GUROBI optimizer is used to solve the models in the above two stages. By analyzing the results, the total passenger travel time and train travel time decreased by 2.81% and 3.34% respectively. The proposed method generates a more efficient solution for the railway system.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

The Project Under the Guidance of Cangzhou Key Research and Development Plan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Railway track allocation: models and methods;RM Lusby;OR Spectrum,2009

2. Optimal lines for railway systems;MR Bussieck;European Journal of Operational Research,1997

3. Cost optimal allocation of rail passenger lines;MT Claessens;European Journal of Operational Research,1998

4. A Branch-and-Cut Approach for Solving Railway Line-Planning Problems;J-W Goossens;Transportation Science,2004

5. On solving multi-type railway line planning problems;J-W Goossens;European Journal of Operational Research,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3