Reconciliation and evolution of Penicillium rubens genome-scale metabolic networks–What about specialised metabolism?

Author:

Nègre Delphine,Larhlimi Abdelhalim,Bertrand SamuelORCID

Abstract

In recent years, genome sequencing of filamentous fungi has revealed a high proportion of specialised metabolites with growing pharmaceutical interest. However, detecting such metabolites through in silico genome analysis does not necessarily guarantee their expression under laboratory conditions. However, one plausible strategy for enabling their production lies in modifying the growth conditions. Devising a comprehensive experimental design testing in different culture environments is time-consuming and expensive. Therefore, using in silico modelling as a preliminary step, such as Genome-Scale Metabolic Network (GSMN), represents a promising approach to predicting and understanding the observed specialised metabolite production in a given organism. To address these questions, we reconstructed a new high-quality GSMN for the Penicillium rubens Wisconsin 54–1255 strain, a commonly used model organism. Our reconstruction, iPrub22, adheres to current convention standards and quality criteria, incorporating updated functional annotations, orthology searches with different GSMN templates, data from previous reconstructions, and manual curation steps targeting primary and specialised metabolites. With a MEMOTE score of 74% and a metabolic coverage of 45%, iPrub22 includes 5,192 unique metabolites interconnected by 5,919 reactions, of which 5,033 are supported by at least one genomic sequence. Of the metabolites present in iPrub22, 13% are categorised as belonging to specialised metabolism. While our high-quality GSMN provides a valuable resource for investigating known phenotypes expressed in P. rubens, our analysis identifies bottlenecks related, in particular, to the definition of what is a specialised metabolite, which requires consensus within the scientific community. It also points out the necessity of accessible, standardised and exhaustive databases of specialised metabolites. These questions must be addressed to fully unlock the potential of natural product production in P. rubens and other filamentous fungi. Our work represents a foundational step towards the objective of rationalising the production of natural products through GSMN modelling.

Funder

Agence Nationale de la Recherche

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3