Abstract
COVID-19 has brought a great challenge to the medical system. A key scientific question is how to make a balance between home quarantine and staying in the hospital. To this end, we propose a game-based susceptible-exposed-asymptomatic -symptomatic- hospitalized-recovery-dead model to reveal such a situation. In this new framework, time-varying cure rate and mortality are employed and a parameter m is introduced to regulate the probability that individuals are willing to go to the hospital. Through extensive simulations, we find that (1) for low transmission rates (β < 0.2), the high value of m (the willingness to stay in the hospital) indicates the full use of medical resources, and thus the pandemic can be easily contained; (2) for high transmission rates (β > 0.2), large values of m lead to breakdown of the healthcare system, which will further increase the cumulative number of confirmed cases and death cases. Finally, we conduct the empirical analysis using the data from Japan and other typical countries to illustrate the proposed model and to test how our model explains reality.
Funder
National Natural Science Foundation of China
General project of scientific research fund project of Yunnan Provincial Department of Education
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献