A hybrid smell agent symbiosis organism search algorithm for optimal control of microgrid operations

Author:

Mohammed Salisu,Sha’aban Yusuf A.ORCID,Umoh Ime J.,Salawudeen Ahmed T.,Ibn Shamsah Sami M.ORCID

Abstract

This paper presents a hybrid Smell Agent Symbiosis Organism Search Algorithm (SASOS) for optimal control of autonomous microgrids. In microgrid operation, a single optimization algorithm often lacks the required balance between accuracy and speed to control power system parameters such as frequency and voltage effectively. The hybrid algorithm reduces the imbalance between exploitation and exploration and increases the effectiveness of control optimization in microgrids. To achieve this, various energy resource models were coordinated into a single model for optimal energy generation and distribution to loads. The optimization problem was formulated based on the network power flow and the discrete-time sampling of the constrained control parameters. The development of SASOS comprises components of Symbiotic Organism Search (SOS) and Smell Agent Optimization (SAO) codified in an optimization loop. Twenty-four standard test function benchmarks were used to evaluate the performance of the algorithm developed. The experimental analysis revealed that SASOS obtained 58.82% of the Desired Convergence Goal (DCG) in 17 of the benchmark functions. SASOS was implemented in the Microgrid Central Controller (MCC) and benchmarked alongside standard SOS and SAO optimization control strategies. The MATLAB/Simulink simulation results of the microgrid load disturbance rejection showed the viability of SASOS with an improved reduction in Total Harmonic Distortion (THD) of 19.76%, compared to the SOS, SAO, and MCC methods that have a THD reduction of 15.60%, 12.74%, and 6.04%, respectively, over the THD benchmark. Based on the results obtained, it can be concluded that SASOS demonstrates superior performance compared to other methods. This finding suggests that SASOS is a promising solution for enhancing the control system of autonomous microgrids. It was also shown to apply to other sectors of engineering optimization.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimiser.;AA El-Fergany;IET Gener Transm Distrib,2017

2. Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach;H Bevrani;IEEE Trans Smart Grid,2012

3. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm.;AL Bukar;Sol Energy,2019

4. Performance Analysis of a Rooftop Solar-PV Power Supply System for Customers.;UC Ogbuefi;2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020.,2020

5. Decentralized model predictive hierarchical control strategy for islanded AC microgrids.;M Jayachandran;Electr Power Syst Res,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3