Delpinium uncinatum mediated green synthesis of AgNPs and its antioxidant, enzyme inhibitory, cytotoxic and antimicrobial potentials

Author:

Rehman HinaORCID,Ali Waqar,Ali Mohammad,Khan Nadir Zaman,Aasim Muhammad,Khan Ayaz Ali,Khan Tariq,Ali Muhammad,Ali Ashaq,Ayaz Muhammad,Shah Muzamil,Hashmi Syed SalmanORCID

Abstract

Green synthesis of nanoparticles is becoming a method of choice for biological research due to its environmentally benign outcomes, stability and ease of synthesis. In this study, silver nanoparticles (AgNPs) were synthesized using stem (S-AgNPs), root (R-AgNPs) and mixture of stem and root (RS-AgNPs) ofDelphinium uncinatum. The synthesized nanoparticles were characterized by standardized techniques and evaluated for their antioxidant, enzyme inhibition, cytotoxic and antimicrobial potentials. The AgNPs exhibited efficient antioxidant activities and considerable enzyme inhibition potential against alpha amylase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. S-AgNPs showed strong cytotoxicity against human hepato-cellular carcinoma cells (HepG2) and high enzyme inhibitory effect (IC50 values 27.5μg/ml for AChE and 22.60 μg/ml for BChE) compared to R-AgNPs and RS-AgNPs. RS-AgNPs showed significant inhibition of Klebsiella pneumoniae and Aspergillus flavus and exhibited higher biocompatibility (<2% hemolysis) in human red blood cells hemolytic assays. The present study showed that biologically synthesized AgNPs using the extract of various parts of D. uncinatum have strong antioxidant and cytotoxic potentials.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3