Enterprise marketing strategy using big data mining technology combined with XGBoost model in the new economic era

Author:

Chen HuijunORCID

Abstract

The technological development in the new economic era has brought challenges to enterprises. Enterprises need to use massive and effective consumption information to provide customers with high-quality customized services. Big data technology has strong mining ability. The relevant theories of computer data mining technology are summarized to optimize the marketing strategy of enterprises. The application of data mining in precision marketing services is analyzed. Extreme Gradient Boosting (XGBoost) has shown strong advantages in machine learning algorithms. In order to help enterprises to analyze customer data quickly and accurately, the characteristics of XGBoost feedback are used to reverse the main factors that can affect customer activation cards, and effective analysis is carried out for these factors. The data obtained from the analysis points out the direction of effective marketing for potential customers to be activated. Finally, the performance of XGBoost is compared with the other three methods. The characteristics that affect the top 7 prediction results are tested for differences. The results show that: (1) the accuracy and recall rate of the proposed model are higher than other algorithms, and the performance is the best. (2) The significance p values of the features included in the test are all less than 0.001. The data shows that there is a very significant difference between the proposed features and the results of activation or not. The contributions of this paper are mainly reflected in two aspects. 1. Four precision marketing strategies based on big data mining are designed to provide scientific support for enterprise decision-making. 2. The improvement of the connection rate and stickiness between enterprises and customers has played a huge driving role in overall customer marketing.

Funder

Research on interdisciplinary talent training mechanism under the platform of Higher Vocational Finance and Economics Students Skill Competition

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. The new era of digital transformation and Covid-19 effect on the employment in mobile operators in Egypt;A. Elsafty;Business and Management Studies,2021

2. A critical review of digital marketing. M. Bala, D. Verma (2018). A Critical Review of Digital Marketing;M. Bala;International Journal of Management, IT & Engineering,2018

3. Big data analytics in weather forecasting: A systematic review;M. Fathi;Archives of Computational Methods in Engineering,2022

4. Machine learning models based on molecular fingerprints and an extreme gradient boosting method lead to the discovery of JAK2 inhibitors;M. Yang;Journal of Chemical Information and Modeling,2019

5. Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest;X. A. Bi;IEEE Journal of Biomedical and Health Informatics,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3