3D doppler ultrasound imaging of cerebral blood flow for assessment of neonatal hypoxic-ischemic brain injury in mice

Author:

Shen Guofang,Sanchez Kayla,Hu Shirley,Zhao Zhen,Zhang Lubo,Ma QingyiORCID

Abstract

Cerebral blood flow (CBF) acutely reduces in neonatal hypoxic-ischemic encephalopathy (HIE). Clinic studies have reported that severe CBF impairment can predict HIE outcomes in neonates. Herein, the present study uses a non-invasive 3D ultrasound imaging approach to evaluate the changes of CBF after HI insult, and explores the correlation between CBF alterations and HI-induced brain infarct in mouse pups. The neonatal HI brain injury was induced in postnatal day 7 mouse pups using the Rice-Vannucci model. Non-invasive 3D ultrasound imaging was conducted to image CBF changes with multiple frequencies on mouse pups before common carotid artery (CCA) ligation, immediately after ligation, and 0 or 24 hours after HI. Vascularity ratio of the ipsilateral hemisphere was acutely reduced after unilateral ligation of the CCA alone or in combination with hypoxia, and partially restored at 24 hours after HI. Moreover, regression analysis showed that the vascularity ratio of ipsilateral hemisphere was moderately correlated with brain infarct size 24 hours after HI, indicating that CBF reduction contributes to of HI brain injury. To further verify the association between CBF and HI-induced brain injury, a neuropeptide C-type natriuretic peptide (CNP) or PBS was intranasally administrated to the brain of mouse pups one hour after HI insult. Brain infarction, CBF imaging and long-term neurobehavioral tests were conducted. The result showed that intranasal administration of CNP preserved ipsilateral CBF, reduced the infarct size, and improved neurological function after HI brain injury. Our findings suggest that CBF alteration is an indicator for neonatal HI brain injury, and 3D ultrasound imaging is a useful non-invasive approach for assessment of HI brain injury in mouse model.

Funder

National Institutes of Health

NIH

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy.;JJ Kurinczuk;Early Hum Dev,2010

2. Temporal Trends in the Severity and Mortality of Neonatal Hypoxic-Ischemic Encephalopathy in the Era of Hypothermia.;C Vega-Del-Val;Neonatology.,2021

3. Cooling for newborns with hypoxic ischaemic encephalopathy.;SE Jacobs;Cochrane Database Syst Rev.,2013

4. Impaired autoregulation of cerebral blood flow in the distressed newborn infant;HC Lou;J Pediatr,1979

5. Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury.;LO Tierradentro-Garcia;Am J Perinatol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3