Abstract
Grazing livestock in subtropical and tropical regions are susceptible to prolonged exposition to periods of extreme environmental conditions (i.e., temperature and humidity) that can trigger heat stress (HS). Currently, there is limited information on the effects of HS in the cow-calf sector globally, including in the southern U.S., as well as on mitigation strategies that could be implemented to improve animal well-being and performance. This study evaluated the impact of artificial shade (SHADE vs. NO SHADE) and breed (ANGUS vs. BRANGUS) on performance of pregnant-lactating cows, nursing heifers, and their subsequent offspring. Twenty-four Angus and 24 Brangus black-hided cows [579 ± 8 kg body weight (BW); approximately 85 d of gestation] and their nursing heifers (approximately 174 d of age) were randomly allocated to 12 ‘Pensacola’ bahiagrass pastures (Paspalum notatum Flüggé; 1.3 ha, n = 4 pairs/pasture), with or without access to artificial shade [NO SHADE BRANGUS (NSB), NO SHADE ANGUS (NSA), SHADE BRANGUS (SB), and SHADE ANGUS (SA)] for 56 d that anticipated weaning during the summer season in Florida. Body condition score (BCS) of cows, blood samples, and BW of cow-calf pairs were obtained every 14 d during the 56-d experimental period until weaning. Following weaning (d 56), treatments were ceased, and cows and weaned heifers were managed alike. Weaned heifers were randomly allocated to 4 pens (n = 12/pen) equipped with GrowSafe feed bunks for 14 d to assess stress responses during weaning via plasma haptoglobin. An effect of SHADE × BREED interaction was detected for cow ADG, BW change, final BW, and final BCS, where SB had the greatest ADG, BW change, final BW, and final BCS. On d 14, SA cows had the greatest concentrations of insulin whereas on d 28 NSB had the lowest concentrations, NSA the greatest, and SA and SB being intermediate. On d 56, SA tended to have the greatest plasma insulin concentrations and SB the lowest. Weight gain per area (kg/ha) tended to be 11.4 kg/ha greater in SHADE vs. NO SHADE pastures. Pre-weaning calf ADG tended to be 0.14 kg greater for SHADE vs. NO SHADE calves. Weaning weight and BW at 14-d post-weaning were lesser for NSB vs. NSA, SA, and SB, whereas no differences in postweaning ADG or haptoglobin were observed. Effects of SHADE × BREED × day interaction was detected on plasma concentrations of IGF-1, in which NSA heifers had the lowest concentrations on weaning day. Gestation length was greater for SHADE vs. NO SHADE cows, but with no impacts on subsequent calf birth and weaning weight. In summary, providing artificial shade to pregnant-lactating beef cows increased body weight gain of nursing heifers and Brangus cows, while no impact on Angus dams were observed. The provision of artificial shade during the first trimester of gestation did not alter growth performance of the subsequent offspring at birth and weaning even though gestation length was longer.
Publisher
Public Library of Science (PLoS)