Abstract
Historical loss of river and stream habitats due to impassable dams has contributed to the severe decline of many fish species. Anadromous fishes that migrate from the sea to freshwater streams to spawn have been especially impacted as dams restrict these fish from accessing ancestral spawning grounds. In 2018, Bloede Dam was removed from the Patapsco River near Baltimore, Maryland, restoring approximately 100 km of potential habitat for migratory fish. We assessed the response of anadromous river herring, alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), to this dam removal by monitoring environmental DNA (eDNA) and eggs from 2015 to 2021 at locations upstream and downstream of the dam site during their spawning migrations. We additionally assessed the presence of fish by collecting electrofishing samples and tracked the movements of individual adult fish within the river using passive integrated transponder (PIT) tags. No adult river herring, eDNA, or eggs were detected upstream of Bloede Dam in the four years prior to its removal despite the presence of a fish ladder. Our results suggest initial habitat use recovery by spawning river herring in the first year post-removal, although a relatively small proportion of the population in the river used the newly accessible habitat. In the three years post-removal, the likelihood of detecting river herring eDNA upstream of the former dam site increased to 5% for alewife and 13% for blueback herring. Two adult fish were also collected in electrofishing samples upstream of the dam site in 2021. We found no evidence of changes in egg abundance and no tagged fish were detected upstream of the dam site post-removal. While long term monitoring is needed to assess population changes, this study highlights the value of integrating methods for comprehensive understanding of habitat use following dam removal.
Funder
National Fish and Wildlife Foundation
Maryland Sea Grant, University of Maryland
Smithsonian Environmental Research Center
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献