IR microspectroscopic investigation of the interaction of some losartan salts with human stratum corneum protein and its effect on losartan transdermal permeation

Author:

Mansour Randa S. H.ORCID,Al Khawaja Aamal Y.,Hamdan Imad I.,Khalil Enam A.

Abstract

The interaction of pharmacologically active drugs with SC biochemical components is underestimated in pharmaceutical research. The aim of this research was to illustrate that some drugs intended for transdermal delivery could interact with the protein component of SC. Such interactions could be in favor of or opposition to their percutaneous absorption. IR microspectroscopy was used to delineate possible interaction of SC keratin with three losartan salts LOS-K, LOS-DEA and LOS-AML salts in addition to AML-BES salt. The results of PCA, combined with comparisons of average second derivative spectra of SC samples treated with these salts and the control SC, showed that LOS-DEA did not interact with SC, thus providing base line permeation of losartan. AML-BES, LOS-AML and LOS-K salts modified the conformational structure of keratin. The disorganization effect on the α-helical structure and induced formation of parallel β-sheets and random coils were in the order of AML-BES˃LOS-AML˃LOS-K. The order of the impact of treatments which resulted in increased formation of β-turns was AML-BES˃LOS-AML. The formation of antiparallel β-sheets was manifested by LOS-AML. Thus, the overall effect of these salts on the SC protein was AML-BES˃LOS-AML˃LOS-K. The impact of LOS-K was associated with improved permeation whereas the impact of LOS-AML was associated with hindered permeation of both losartan and amlodipine. There is a possibility that losartan and amlodipine when present in combination inside SC, their binding to the protein is enhanced leading to being retained within SC.

Funder

Deanship of Scientific Research, University of Jordan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3