Fumagillin regulates stemness and malignancies in cancer stem-like cells derived from liver cancer via targeting to MetAP-2

Author:

Zhang Ke,Hu Jian,Zhao ZiyiORCID

Abstract

Background Cancer relapse is associated with the presence of cancer stem-like cells (CSCs), which lead to multidirectional differentiation and unrestricted proliferative replication. Fumagillin, a myocotoxin produced by the saprophytic filamentous fungus Aspergillus fumigatus, has been reported to affect malignant characteristics in hepatocellular cancer cells. However, its exact role in CSCs is still unknown. Methods CSCs were enriched by culturing cancer cells in serum-free medium. The effects of fumagillin on malignant cell characteristics and mitochondrial function were measured. The regulatory role of fumagillin on methionine aminopeptidase-2 (MetAP-2) was assessed. Results When it was supplemented in medium, fumagillin treatment inhibited sphere formation and the maintenance of stemness of CSCs without disturbing cell growth. Fumagillin also decreased stemness-related markers and the aldehyde dehydrogenase 1 (ALDH1)-positive proportion, which demonstrated that fumagillin decreases stemness in CSCs. It was also found to inhibit malignant traits in CSCs, including cell proliferation, invasion, and tumor formation, and sensitize CSCs to chemoagents, including sorafenib and doxorubicin, by promoting chemoagent-induced apoptosis. Moreover, fumagillin treatment was found to disturb mitochondrial membrane homeostasis, ATP synthesis and mitochondrial transcriptional activity. In addition, we found that fumagillin decreased MetAP-2 protein levels and exerted anti-CSC effects potentially by regulating MetAP-2. We also found that fumagillin treatment activated p53 and its transcriptional activity and thus caused cell cycle blockade. Moreover, fumagillin treatment significantly decreased tumor formation in nude mice. Conclusion This work offers evidence for fumagillin as a specific inhibitor of liver cancer CSCs and proposes a novel strategy for cancer therapy.

Funder

The General Program (Key Program, Major Research Plan) of National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3