Operational analysis for COVID-19 testing: Determining the risk from asymptomatic infections

Author:

Mangel MarcORCID

Abstract

Testing remains a key tool for managing health care and making health policy during the coronavirus pandemic, and it will probably be important in future pandemics. Because of false negative and false positive tests, the observed fraction of positive tests—the surface positivity—is generally different from the fraction of infected individuals (the incidence rate of the disease). In this paper a previous method for translating surface positivity to a point estimate for incidence rate, then to an appropriate range of values for the incidence rate consistent with the model and data (the test range), and finally to the risk (the probability of including one infected individual) associated with groups of different sizes is illustrated. The method is then extended to include asymptomatic infections. To do so, the process of testing is modeled using both analysis and Monte Carlo simulation. Doing so shows that it is possible to determine point estimates for the fraction of infected and symptomatic individuals, the fraction of uninfected and symptomatic individuals, and the ratio of infected asymptomatic individuals to infected symptomatic individuals. Inclusion of symptom status generalizes the test range from an interval to a region in the plane determined by the incidence rate and the ratio of asymptomatic to symptomatic infections; likelihood methods can be used to determine the contour of the rest region. Points on this contour can be used to compute the risk (defined as the probability of including one asymptomatic infected individual) in groups of different sizes. These results have operational implications that include: positivity rate is not incidence rate; symptom status at testing can provide valuable information about asymptomatic infections; collecting information on time since putative virus exposure at testing is valuable for determining point estimates and test ranges; risk is a graded (rather than binary) function of group size; and because the information provided by testing becomes more accurate with more tests but at a decreasing rate, it is possible to over-test fixed spatial regions. The paper concludes with limitations of the method and directions for future work.

Funder

Applied Physics Laboratory, Johns Hopkins University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. Pandemic as a natural evolutionary phenomenon;J Lederberg;Soc Res,1988

2. Doughton S. Bill Gates: We must prepare for the net pandemic like we prepare for war. Seattle Times. 27 Jan 2021 [Cited 2021 Jan 27].

3. Gilbert S. Vaccine vs Virus: This race and the next one. The 44th Dimbleby Lecture. 2021. [Cited 2022 Feb 21]. Available from https://www.ox.ac.uk/news/2021-12-07-professor-dame-sarah-gilbert-delivers-44th-dimbleby-lecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3