Hippocampal 4-Hz oscillations emerge during stationary running in a wheel and are resistant to medial septum inactivation

Author:

de Lima Ivan Alisson Cavalcante NunesORCID,Belchior HindiaelORCID

Abstract

Recent studies described 2–4 Hz oscillations in the hippocampus of rats performing stationary locomotion on treadmills and other apparatus. Since the 2–4 Hz rhythm shares common features with theta (5–12 Hz) oscillations—such as a positive amplitude-running speed relationship and modulation of spiking activity—many have questioned whether these rhythms are related or independently generated. Here, we analyzed local field potentials and spiking activity from the dorsal CA1 of rats executing a spatial alternation task and running for ~15 s in a wheel during the intertrial intervals both before and after muscimol injection into the medial septum. We observed remarkable 4-Hz oscillations during wheel runs, which presented amplitude positively correlated with running speed. Surprisingly, the amplitude of 4-Hz and theta oscillations were inversely related. Medial septum inactivation abolished hippocampal theta but preserved 4-Hz oscillations. It also affected the entrainment of pyramidal cells and interneurons by 4-Hz rhythmic activity. In all, these results dissociate the underlying mechanism of 4-Hz and theta oscillations in the rat hippocampus.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. Neuronal Oscillations in Cortical Networks.;G Buzséki;Science,2004

2. Theta Oscillations in the Hippocampus;G. Buzsáki;Neuron,2002

3. Rhythms of the hippocampal network;LL Colgin;Nature Reviews Neuroscience,2016

4. Five Decades of Hippocampal Place Cells and EEG Rhythms in Behaving Rats;LL Colgin;The Journal of Neuroscience,2019

5. Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel.;A Czurkó;European Journal of Neuroscience,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3