HetIG-PreDiG: A Heterogeneous Integrated Graph Model for Predicting Human Disease Genes based on gene expression

Author:

Jagodnik Kathleen M.ORCID,Shvili Yael,Bartal AlonORCID

Abstract

Graph analytical approaches permit identifying novel genes involved in complex diseases, but are limited by (i) inferring structural network similarity of connected gene nodes, ignoring potentially relevant unconnected nodes; (ii) using homogeneous graphs, missing gene-disease associations’ complexity; (iii) relying on disease/gene-phenotype associations’ similarities, involving highly incomplete data; (iv) using binary classification, with gene-disease edges as positive training samples, and non-associated gene and disease nodes as negative samples that may include currently unknown disease genes; or (v) reporting predicted novel associations without systematically evaluating their accuracy. Addressing these limitations, we develop the Heterogeneous Integrated Graph for Predicting Disease Genes (HetIG-PreDiG) model that includes gene-gene, gene-disease, and gene-tissue associations. We predict novel disease genes using low-dimensional representation of nodes accounting for network structure, and extending beyond network structure using the developed Gene-Disease Prioritization Score (GDPS) reflecting the degree of gene-disease association via gene co-expression data. For negative training samples, we select non-associated gene and disease nodes with lower GDPS that are less likely to be affiliated. We evaluate the developed model’s success in predicting novel disease genes by analyzing the prediction probabilities of gene-disease associations. HetIG-PreDiG successfully predicts (Micro-F1 = 0.95) gene-disease associations, outperforming baseline models, and is validated using published literature, thus advancing our understanding of complex genetic diseases.

Funder

Mortimer B. Zuckerman STEM Leadership Program post-doctoral fellowship

Bar-Ilan University’s Data Science Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in computational methods for identifying cancer driver genes;Mathematical Biosciences and Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3