Performance evaluation of developed macrophyte-assisted vermifiltration system designed with varied macrophytes and earthworm species for domestic wastewater treatment

Author:

Nsiah-Gyambibi RaphealORCID,Acheampong Emmanuel,Von-Kiti Elizabeth,Larbi Ayisi Christian

Abstract

Development of sustainable technology to treat domestic wastewater with added advantages of cost reduction and improved handling efficiency is crucial in developing countries. This is because, domestic wastewater from households are stored in septic tanks and are poorly treated prior discharge. This study developed a macrophyte-assisted vermifiltration (MAV) system to treat domestic wastewater. The MAV system is an integrated approach of macrophytes and earthworms in a vermifiltration and complex physicochemical mechanism processes. The use of different macrophyte and earthworm species was hypothesized by the study to affect and vary the treatment performance of the developed MAV. The study therefore aimed to evaluate the treatment performance of the developed MAV when three varied macrophyte species (Eichhornia crassopes, Pistia stratiotes and Spirodela sp.) and two varied earthworm species (Eisenia fetida and Eudrilus eugeniae) were used to design the treatment system. Treated effluents were collected every 48hours within two weeks for physico-chemical, pathogen and helminth analysis. The contaminants (Ntot, NH3, NO3-N and Ptot) in the wastewater were high (>50 mgL-1, >5 mgL-1, >1 mgL-1 and >20 mgL-1 respectively). Results revealed that the developed MAV systems were effective in the removal of solids (>60%), nutrients (>60%) and pathogens (>90%). In most cases, there were no significant differences between the selected varied macrophytes and earthworms in the treatment performances. Results therefore demonstrated that the selected macrophytes combined with the earthworm species were suitable when used in the development of the MAV system. Developing the MAV with the selected varied macrophyte and earthworm species did not only contribute to the treatment of the wastewater, but also improved the vermiculture. Eudrilus eugeniae however demonstrated higher biomass gain (5–10% more) compared to Eisenia fetida.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Awuah, E. Pathogen removal mechanisms in macrophyte. PhD. Thesis, Wageningen University. 2006. http://balkema.nl.taylorandfrancis.co.uk,crcpress.

2. Pathogen removal during wastewater treatment by vermifiltration;S. Arora;Environmental Technology,2014

3. Innovating new methods for wastewater treatment in El-Dakhla Oasis in Upper Egypt from chemical and biological pollutants using modified down Flow Hanging Sponge (DHS) reactor in presence of new environmental friendly chelator;A. S. El Tabl;Egyptian Journal of Chemistry,2021

4. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites;A. H. Ören;Journal of Hazardous Materials,2006

5. Arsenic: Occurrence, toxicity and speciation techniques;C. K. Jain;Water Research,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3