Multi-planar 2.5D U-Net for image quality enhancement of dental cone-beam CT

Author:

Ryu Kanghyun,Lee ChenaORCID,Han Yoseob,Pang Subeen,Kim Young Hyun,Choi Chanyeol,Jang Ikbeom,Han Sang-SunORCID

Abstract

Cone-beam computed tomography (CBCT) can provide 3D images of a targeted area with the advantage of lower dosage than multidetector computed tomography (MDCT; also simply referred to as CT). However, in CBCT, due to the cone-shaped geometry of the X-ray source and the absence of post-patient collimation, the presence of more scattering rays deteriorates the image quality compared with MDCT. CBCT is commonly used in dental clinics, and image artifacts negatively affect the radiology workflow and diagnosis. Studies have attempted to eliminate image artifacts and improve image quality; however, a vast majority of that work sacrificed structural details of the image. The current study presents a novel approach to reduce image artifacts while preserving details and sharpness in the original CBCT image for precise diagnostic purposes. We used MDCT images as reference high-quality images. Pairs of CBCT and MDCT scans were collected retrospectively at a university hospital, followed by co-registration between the CBCT and MDCT images. A contextual loss-optimized multi-planar 2.5D U-Net was proposed. Images corrected using this model were evaluated quantitatively and qualitatively by dental clinicians. The quantitative metrics showed superior quality in output images compared to the original CBCT. In the qualitative evaluation, the generated images presented significantly higher scores for artifacts, noise, resolution, and overall image quality. This proposed novel approach for noise and artifact reduction with sharpness preservation in CBCT suggests the potential of this method for diagnostic imaging.

Funder

National Research Foundation of Korea

Hankuk University of Foreign Studies Research Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3