rang: Reconstructing reproducible R computational environments

Author:

Chan Chung-hongORCID,Schoch David

Abstract

A complete declarative description of the computational environment is usually missing when researchers share their materials. Without such description, software obsolescence and missing system components can jeopardize computational reproducibility in the future, even when data and computer code are available. The R package rang is a complete solution for generating the declarative description for other researchers to automatically reconstruct the computational environment at a specific time point. The reconstruction process, based on Docker, has been tested for R code as old as 2001. The declarative description generated by rang satisfies the definition of a reproducible research compendium and can be shared as such. In this contribution, we show how rang can be used to make otherwise unexecutable code, spanning fields such as computational social science and bioinformatics, executable again. We also provide instructions on how to use rang to construct reproducible and shareable research compendia of current research. The package is currently available from CRAN (https://cran.r-project.org/web/packages/rang/index.html) and GitHub (https://github.com/chainsawriot/rang).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. A large-scale study on research code quality and execution;A Trisovic;Scientific Data,2022

2. Abate P, Di Cosmo R, Gesbert L, Le Fessant F, Treinen R, Zacchiroli S. Mining Component Repositories for Installability Issues. 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. 2015.

3. NixOS: A purely functional Linux distribution;E Dolstra;Journal of Functional Programming,2010

4. R Core Team. R: A Language and Environment for Statistical Computing; 2021. Available from: https://www.R-project.org/.

5. Better incentives are needed to reward academic software development;C Merow;Nature Ecology & Evolution,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3