Phosphate solubilizing bacteria from soils with varying environmental conditions: Occurrence and function

Author:

Janati WalidORCID,Bouabid Rachid,Mikou Karima,Ghadraoui Lahsen El,Errachidi Faouzi

Abstract

Phosphate solubilizing bacteria (PSB) is an advantageous way to supply phosphate (P) to plants. The Mediterranean climate of Morocco, especially the low-lying areas, is semi-arid with nutrient-depleted soils in which small-scale, low-income farmers dominate without access to expensive inorganic fertilizers. However, there is not a wide range of PSBs suitable for various agroecological situations. Furthermore, our understanding of the soil and climatic variables that influence their development is limited. This study aims to examine the impacts of specific environmental factors, such as climate and soil, on the abundance, potential, and diversity of PSBs in four agricultural regions of Morocco. To assess the possible impact of these factors on the P solubilization capacity of PSBs and plant growth-promoting (PGP) traits, we analyzed the soil and climate of each sample studied. Similarly, we tested the P solubilization efficiency of the isolates. The bacteria were isolated in a National Botanical Research Institute’s phosphate (NBRIP) agar medium. A total of 51 PSBs were studied in this work. The P-solubilization average of Rock P (RP) and Tricalcium P (TCP) of all strains that were isolated from each of the four regions ranged from 18.69 mg.L-1 to 40.43 mg.L-1 and from 71.71 mg.L-1 to 94.54 mg.L-1, respectively. The PGP traits of the isolated strains are positively correlated with the PSBs abundance and the sample characteristics (soil and climate). The morphological and biochemical characteristics of the strain allowed us to identify around nine different bacterial genera, including Bacillus, Pseudomonas, and Rhizobium. The findings showed that bacterial communities, density, and potency are closely correlated to various edapho-climatic conditions such as temperature, precipitation, soil nutrient status, and soil texture. These findings could be used to improve an effective plant-PSBs system and increase agricultural output by taking into account their specific ecological traits and plant growth mechanisms.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference77 articles.

1. The effects of host plant genotype and environmental conditions on fungal community composition and phosphorus solubilization in willow short rotation coppice;P Koczorski;Frontiers in Plant Science,2021

2. Isolation and characterization of phosphate solubilizing bacteria from phosphate solid sludge of the moroccan phosphate mines;FZ Aliyat;The Open Agriculture Journal,2020

3. The story of phosphorus: global food security and food for thought.;D Cordell;Global environmental change.,2009

4. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review.;P. Hinsinger;Plant and soil.Dec,2001

5. Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling;SB Tagele;Microbiological research,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3