Gell: A GPU-powered 3D hybrid simulator for large-scale multicellular system

Author:

Du JiayiORCID,Zhou Yu,Jin Lihua,Sheng KeORCID

Abstract

As a powerful but computationally intensive method, hybrid computational models study the dynamics of multicellular systems by evolving discrete cells in reacting and diffusing extracellular microenvironments. As the scale and complexity of studied biological systems continuously increase, the exploding computational cost starts to limit large-scale cell-based simulations. To facilitate the large-scale hybrid computational simulation and make it feasible on easily accessible computational devices, we develop Gell (GPU Cell), a fast and memory-efficient open-source GPU-based hybrid computational modeling platform for large-scale system modeling. We fully parallelize the simulations on GPU for high computational efficiency and propose a novel voxel sorting method to further accelerate the modeling of massive cell-cell mechanical interaction with negligible additional memory footprint. As a result, Gell efficiently handles simulations involving tens of millions of cells on a personal computer. We compare the performance of Gell with a state-of-the-art paralleled CPU-based simulator on a hanging droplet spheroid growth task and further demonstrate Gell with a ductal carcinoma in situ (DCIS) simulation. Gell affords ~150X acceleration over the paralleled CPU method with one-tenth of the memory requirement.

Funder

NIH

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Nonlinear modelling of cancer: bridging the gap between cells and tumours;JS Lowengrub;Nonlinearity,2009

2. A Review of Cell-Based Computational Modeling in Cancer Biology;J Metzcar;JCO Clin Cancer Inform,2019

3. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues.;A Karolak;J R Soc Interface.,2018

4. Simulating Properties of In Vitro Epithelial Cell Morphogenesis;MR Grant;PLoS Comput Biol [Internet].,2006

5. Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling.;J Tang;Integr Biol.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3