Seasonal and inter-annual drivers of yellow fever transmission in South America

Author:

Hamlet ArranORCID,Gaythorpe Katy A. M.ORCID,Garske TiniORCID,Ferguson Neil M.

Abstract

In the last 20 years yellow fever (YF) has seen dramatic changes to its incidence and geographic extent, with the largest outbreaks in South America since 1940 occurring in the previously unaffected South-East Atlantic coast of Brazil in 2016–2019. While habitat fragmentation and land-cover have previously been implicated in zoonotic disease, their role in YF has not yet been examined. We examined the extent to which vegetation, land-cover, climate and host population predicted the numbers of months a location reported YF per year and by each month over the time-period. Two sets of models were assessed, one looking at interannual differences over the study period (2003–2016), and a seasonal model looking at intra-annual differences by month, averaging over the years of the study period. Each was fit using hierarchical negative-binomial regression in an exhaustive model fitting process. Within each set, the best performing models, as measured by the Akaike Information Criterion (AIC), were combined to create ensemble models to describe interannual and seasonal variation in YF. The models reproduced the spatiotemporal heterogeneities in YF transmission with coefficient of determination (R2) values of 0.43 (95% CI 0.41–0.45) for the interannual model and 0.66 (95% CI 0.64–0.67) for the seasonal model. For the interannual model, EVI, land-cover and vegetation heterogeneity were the primary contributors to the variance explained by the model, and for the seasonal model, EVI, day temperature and rainfall amplitude. Our models explain much of the spatiotemporal variation in YF in South America, both seasonally and across the period 2003–2016. Vegetation type (EVI), heterogeneity in vegetation (perhaps a proxy for habitat fragmentation) and land cover explain much of the trends in YF transmission seen. These findings may help understand the recent expansions of the YF endemic zone, as well as to the highly seasonal nature of YF.

Funder

UK Medical Research Council and Department for International Development

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3