Ovitrap surveillance of dengue vector mosquitoes in Bandung City, West Java Province, Indonesia

Author:

Sasmita Hadian ImanORCID,Neoh Kok-BoonORCID,Yusmalinar Sri,Anggraeni Tjandra,Chang Niann-TaiORCID,Bong Lee-Jin,Putra Ramadhani Eka,Sebayang AmeliaORCID,Silalahi Christina Natalina,Ahmad IntanORCID,Tu Wu-ChunORCID

Abstract

Larval surveillance is the central approach for monitoring dengue vector populations in Indonesia. However, traditional larval indices are ineffective for measuring mosquito population dynamics and predicting the dengue transmission risk. We conducted a 14-month ovitrap surveillance. Eggs and immature mosquitoes were collected on a weekly basis from an urban village of Bandung, namely Sekejati. Ovitrap-related indices, namely positive house index (PHI), ovitrap index (OI), and ovitrap density index (ODI), were generated and correlated with environmental variables, housing type (terraced or high-density housing), ovitrap placement location (indoor or outdoor; household or public place), and local dengue cases. Our results demonstrated that Aedes aegypti was significantly predominant compared with Aedes albopictus at each housing type and ovitrap placement location. Ovitrap placement locations and rainfall were the major factors contributing to variations in PHI, OI, and ODI, whereas the influences of housing type and temperature were subtle. Indoor site values were significantly positively correlated to outdoor sites’ values for both OI and ODI. OI and ODI values from households were best predicted with those from public places at 1- and 0-week lags, respectively. Weekly rainfall values at 4- and 3-week lags were the best predictors of OI and ODI for households and public places, respectively. Monthly mean PHI, OI, and ODI were significantly associated with local dengue cases. In conclusion, ovitrap may be an effective tool for monitoring the population dynamics of Aedes mosquitoes, predicting dengue outbreaks, and serving as an early indicator to initiate environmental clean-up. Ovitrap surveillance is easy for surveyors if they are tasked with a certain number of ovitraps at a designated area, unlike the existing larval surveillance methodology, which entails identifying potential breeding sites largely at the surveyors’ discretion. Ovitrap surveillance may reduce the influence of individual effort in larval surveillance that likely causes inconsistency in results.

Funder

Taiwan Centers for Disease Control

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference49 articles.

1. Indonesia Ministry of Health. Situasi penyakit demam berdarah di Indonesia tahun 2017. Center of Data and Information, Indonesia Ministry of Health. 2018. pp. 1–7. [Cited on 2020 July 16]. Available from: https://www.kemkes.go.id/download.php?file=download/pusdatin/infodatin/InfoDatin-Situasi-Demam-Berdarah-Dengue.pdf

2. Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Res. Notes;H Harapan;Dec 1,2019

3. Tren kasus DBD berubah di 2020, hingga Juni masih tinggi;B. Desideria;Liputan6,2020

4. Comprehensive guideline for prevention and control of dengue and dengue haemorrhagic fever;World Health Organization,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3