Ginger (Zingiber Officinale)-derived nanoparticles in Schistosoma mansoni infected mice: Hepatoprotective and enhancer of etiological treatment

Author:

Abd El Wahab Wegdan M.ORCID,El-Badry Ayman A.ORCID,Mahmoud Soheir S.,El-Badry Yaser A.ORCID,El-Badry Mohamed A.ORCID,Hamdy Doaa A.ORCID

Abstract

Background Nanotechnology has been manufactured from medicinal plants to develop safe, and effective antischistosmal alternatives to replace today’s therapies. The aim of the study is to evaluate the prophylactic effect of ginger-derived nanoparticles (GNPs), and the therapeutic effect of ginger aqueous extract, and GNPs on Schistosoma mansoni (S. mansoni) infected mice compared to praziquantel (PZQ), and mefloquine (MFQ). Methodology/principal findings Eighty four mice, divided into nine different groups, were sacrificed at 6th, 8th, and 10th week post-infection (PI), with assessment of parasitological, histopathological, and oxidative stress parameters, and scanning the worms by electron microscope. As a prophylactic drug, GNPs showed slight reduction in worm burden, egg density, and granuloma size and number. As a therapeutic drug, GNPs significantly reduced worm burden (59.9%), tissue egg load (64.9%), granuloma size, and number at 10th week PI, and altered adult worm tegumental architecture, added to antioxidant effect. Interestingly, combination of GNPs with PZQ or MFQ gave almost similar or sometimes better curative effects as obtained with each drug separately. The highest therapeutic effect was obtained when ½ dose GNPs combined with ½ dose MFQ which achieved 100% reduction in both the total worm burden, and ova tissue density as early as the 6th week PI, with absence of detected eggs or tissue granuloma, and preservation of liver architecture. Conclusions/significance GNPs have a schistosomicidal, antioxidant, and hepatoprotective role. GNPs have a strong synergistic effect when combined with etiological treatments (PZQ or MFQ), and significantly reduced therapeutic doses by 50%, which may mitigate side effects and resistance to etiological drugs, a hypothesis requiring further research. We recommend extending this study to humans.

Funder

Beni-Suef University, University Performance Development Center, Support and Project Finance Office

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3