Identification of drug resistance mutations among Mycobacterium bovis lineages in the Americas

Author:

Vázquez-Chacón Carlos ArturoORCID,Rodríguez-Gaxiola Felipe de JesúsORCID,López-Carrera Cruz Fernando,Cruz-Rivera MayraORCID,Martínez-Guarneros ArmandoORCID,Parra-Unda RicardoORCID,Arámbula-Meraz EliakymORCID,Fonseca-Coronado SalvadorORCID,Vaughan Gilberto,López-Durán Paúl AlexisORCID

Abstract

Identifying the Mycobacterium tuberculosis resistance mutation patterns is of the utmost importance to assure proper patient’s management and devising of control programs aimed to limit spread of disease. Zoonotic Mycobacterium bovis infection still represents a threat to human health, particularly in dairy production regions. Routinary, molecular characterization of M. bovis is performed primarily by spoligotyping and mycobacterial interspersed repetitive units (MIRU) while next generation sequencing (NGS) approaches are often performed by reference laboratories. However, spoligotyping and MIRU methodologies lack the resolution required for the fine characterization of tuberculosis isolates, particularly in outbreak settings. In conjunction with sophisticated bioinformatic algorithms, whole genome sequencing (WGS) analysis is becoming the method of choice for advanced genetic characterization of tuberculosis isolates. WGS provides valuable information on drug resistance and compensatory mutations that other technologies cannot assess. Here, we performed an analysis of the most frequently identified mutations associated with tuberculosis drug resistance and their genetic relationship among 2,074 Mycobacterium bovis WGS recovered primarily from non-human hosts. Full-length gene sequences harboring drug resistant associated mutations and their phylogenetic relationships were analyzed. The results showed that M. bovis isolates harbor mutations conferring resistance to both first- and second-line antibiotics. Mutations conferring resistance for isoniazid, fluoroquinolones, streptomycin, and aminoglycosides were identified among animal strains. Our findings highlight the importance of molecular surveillance to monitor the emergence of mutations associated with multi and extensive drug resistance in livestock and other non-human mammals.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3