An investigation of conventional microbial culture for the Naja atra bite wound, and the comparison between culture-based 16S Sanger sequencing and 16S metagenomics of the snake oropharyngeal bacterial microbiota

Author:

Mao Yan-Chiao,Chuang Han-Ni,Shih Chien-Hung,Hsieh Han-Hsueh,Jiang Yu-Han,Chiang Liao-ChunORCID,Lin Wen-LoungORCID,Hsiao Tzu-HungORCID,Liu Po-YuORCID

Abstract

Naja atra is a major venomous snake found in Taiwan. The bite of this snake causes extensive wound necrosis or necrotizing soft tissue infection. Conventional microbial culture-based techniques may fail to identify potential human pathogens and render antibiotics ineffective in the management of wound infection. Therefore, we evaluated 16S Sanger sequencing and next-generation sequencing (NGS) to identify bacterial species in the oropharynx of N. atra. Using conventional microbial culture methods and the VITEK 2 system, we isolated nine species from snakebite wounds. On the basis of the 16S Sanger sequencing of bacterial clones from agar plates, we identified 18 bacterial species in the oropharynx of N. atra, including Morganella morganii, Proteus vulgaris, and Proteus mirabilis, which were also present in the infected bite wound. Using NGS of 16S metagenomics, we uncovered more than 286 bacterial species in the oropharynx of N. atra. In addition, the bacterial species identified using 16S Sanger sequencing accounted for only 2% of those identified through NGS of 16S metagenomics. The bacterial microbiota of the oropharynx of N. atra were modeled better using NGS of 16S metagenomics compared to microbial culture-based techniques. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus penneri were also identified in the NGS of 16S metagenomics. Understanding the bacterial microbiota that are native to the oropharynx of N. atra, in addition to the bite wound, may have additional therapeutic implications regarding empiric antibiotic selection for managing N. atra bites.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3