Ultraviolet disinfection of Schistosoma mansoni cercariae in water

Author:

Hazell LucindaORCID,Allan Fiona,Emery Aidan M.ORCID,Templeton Michael R.

Abstract

Background Schistosomiasis is a parasitic disease that is transmitted by skin contact with waterborne schistosome cercariae. Mass drug administration with praziquantel is an effective control method, but it cannot prevent reinfection if contact with cercariae infested water continues. Providing safe water for contact activities such as laundry and bathing can help to reduce transmission. In this study we examine the direct effect of UV light on Schistosoma mansoni cercariae using ultraviolet light-emitting diodes (UV LEDs) and a low-pressure (LP) mercury arc discharge lamp. Methodology S. mansoni cercariae were exposed to UV light at four peak wavelengths: 255 nm, 265 nm, 285 nm (UV LEDs), and 253.7 nm (LP lamp) using bench scale collimated beam apparatus. The UV fluence ranged from 0–300 mJ/cm2 at each wavelength. Cercariae were studied under a stereo-microscope at 0, 60, and 180 minutes post-exposure and the viability of cercariae was determined by assessing their motility and morphology. Conclusion Very high UV fluences were required to kill S. mansoni cercariae, when compared to most other waterborne pathogens. At 265 nm a fluence of 247 mJ/cm2 (95% confidence interval (CI): 234–261 mJ/cm2) was required to achieve a 1-log10 reduction at 0 minutes post-exposure. Cercariae were visibly damaged at lower fluences, and the log reduction increased with time post-exposure at all wavelengths. Fluences of 127 mJ/cm2 (95% CI: 111–146 mJ/cm2) and 99 mJ/cm2 (95% CI: 85–113 mJ/cm2) were required to achieve a 1-log10 reduction at 60 and 180 minutes post-exposure at 265 nm. At 0 minutes post-exposure 285 nm was slightly less effective, but there was no statistical difference between 265 nm and 285 nm after 60 minutes. The least effective wavelengths were 255 nm and 253.7 nm. Due to the high fluences required, UV disinfection is unlikely to be an energy- or cost-efficient water treatment method against schistosome cercariae when compared to other methods such as chlorination, unless it can be demonstrated that UV-damaged cercariae are non-infective using alternative assay methods or there are improvements in UV LED technology.

Funder

Engineering and Physical Sciences Research Council

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference70 articles.

1. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.;GBD 2016 Collaborators;The Lancet,2017

2. WHO. Global Health Observatory status of schistosomiasis endemic countries: 2018. 2019 [cited 2 Apr 2020]. Available: https://apps.who.int/neglected_diseases/ntddata/sch/sch.html

3. Human schistosomiasis.;DG Colley;The Lancet,2014

4. Simple water supplies to reduce schistosomiasis.;P Jordan;Trop Doct,1978

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3